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Abstract—Analyzing fish and fish schools behavior can help
in studying fish-fish interaction, analyzing characteristics of fish
species, studying prey avoidance maneuvers of fish schools, etc.
Such analysis requires the estimation of each fish’s 3D location,
3D pose, and 3D shape over time. Moreover if we are interested
in studying the interaction of fish by injecting visual / acoustic
stimuli artificially according to their motions, this information
is required in real-time. In this context, our goal is to track
in 3D each fish location and pose, accurately, in real-time, and
in the future we foresee the use of underwater vehicles with
multiple cameras for 3D fish school behavior analysis. As a step
in this direction, in the current paper we propose the use of
a calibrated multi-camera system, where each camera captures
images through a flat surface, and the cameras observe a common
region from different point of views (through one or more flat
surfaces). The proposed system allows to detect and track in 3D
each fish location in real-time, while taking into account light
refraction though flat surfaces. We test the proposed approach
using a fish tank with flat surfaces and present validation results
and obtained processing times.

I. INTRODUCTION

Acquiring accurate information of fish and fish school
collective behavior, analyzing their behavior, and in particular
estimating each fish’s pose, shape and trajectory [1][2][3][4]
can help engineers and fish biologists in i) studying fish
behavior when swimming in regions of interest [1], ii) studying
fish-fish interaction [2], iii) analyzing characteristics of fish
species (e.g swimming ability) [3], iv) studying prey avoidance
maneuvers of fish schools [4], among many others. Such
analysis requires the estimation of 3D information of each fish:
3D location, 3D pose, and 3D shape needs to be estimated
over time [5]. Moreover if we are interested in studying
the interaction of fish by injecting visual / acoustic stimuli
artificially according to their motions, this information is
required in real-time.

When doing such analysis there are various additional
challenges, including: i) a fish is a deformable object, ii) a
fish can make sudden changes in direction & speed, and iii) a
fish can be seen from multiple views and under occlusions.

While fish detection and tracking has been studied
[4][6][7][8] most systems are designed in scenarios: i) with
a small number of fish, ii) running off-line, or iii) where fish
move in shallow waters (i.e. each fish moves in a 2D plane).
Moreover, light refraction in glass and water is usually not
taken into account.

In this context, our long term goal is to track in 3D each
fish location and pose, accurately, in real-time and in large

Fig. 1: Cameras and fish tank. There are three cameras facing
three flat tank surfaces. The tank is designed for the top tank
surface to touch the water. In addition to light refraction,
virtual (mirror) fish and shadows occur.

fish schools, and we foresee the use of underwater vehicles
with multiple cameras for 3D fish school behavior analysis.
This could be achieved using a single underwater vehicle with
multiple cameras or multiple vehicles with a single camera.

We address this by using a calibrated multi-camera system,
where each camera captures images through a flat surface
(e.g. air, glass, water), and the cameras observe a common
region from different point of views (through one or more
flat surfaces). This corresponds to the case of a single vehicle
with multiple cameras and approximates the case of multiple
vehicles having a single camera (where the relative position of
the vehicles is known). The presented approach can be also of
interest for fish behavior analysis in aquariums. We consider
the scenario in Figure 1, where one or more fishes move in a
custom designed water tank with flat surfaces.

The scenario we consider (multiple camera system with a
group of fish moving in a water tank) introduces additional
challenges, namely: i) multiple virtual fish (due to reflections
in the tank surface), ii) fish shadows, iii) reflections of objects
outside the tank may be visible, etc.

The problems of occlusion and 3D modeling are challeng-
ing, but using views can help, and for this, considering light
refractions is critical, especially for an accurate 3D estimation.
Thus a key part of our work is taking into account light
refraction through flat surfaces in an efficient manner.
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Fig. 2: System diagram

Fig. 3: Labeled blobs: left, top and right views.

II. SYSTEM OVERVIEW

We have organized the system in four major modules as
shown in Figure. 2: i) image capture, ii) single-view 2D
analysis, iii) multi-view 3D analysis, and iv) temporal analysis,
with an additional off-line calibration step.

The overall system works as follows. Images are captured
from multiple views (3 views in the experiments), and for
each of these views we obtain 2D fish silhouettes where
more than one fish may be present. Then, using a calibrated
camera model, the 2D silhouettes are combined to obtain
3D regions corresponding to one or more fishes. Finally,
the 3D location and pose of each fish can be estimated
and tracked. For efficiency, the system is implemented using
parallel computing, with each single-view processing running
in parallel in a multi-core CPU.

We give an overview of the system, with a focus on
the single-view 2D processing. We present an overview of
the multi-view 3D processing, in particular on 2D to 3D
processing. Finally, the temporal analysis is briefly discussed.

A. Setup

As test scenario we consider a few Rummy nose tetra fishes
(3 - 9 fishes), each about 3 cm length, swimming freely within

a space of: 30 cm (width), 25 cm (depth), and 20-22 cm
(height). The top surface is slightly sloped to reduce bubbles.
The images are captured from three views using cameras from
top, front and right views.

B. Image acquisition & calibration

The images are acquired using a multi-camera system
and three Flea3 FL3-U3-13E4C Point grey USB cameras
are used. We use a 3D multi-camera model that takes into
light refraction efficiently [9]. The camera model considers
light refraction through flat surfaces, thus information from
the multiple views can be combined in the multi-view 3D
processing. The camera model calibration is done off-line and
has intrinsic and extrinsic steps.

C. Single-view 2D analysis

This module takes a single image, segments foreground
objects, labels them, and generates a set of 2D silhouettes,
with each silhouette corresponding to one or more fish (the
representation is designed to manage occlusions in the 2D to
3D analysis). It has 3 main submodules:

1) Foreground segmentation: is obtained using a simple
background subtraction method, with each background pixel



Fig. 4: 2D silhouette representation. From top-to-bottom: (i)
cropped image region; (ii) silhouette, (iii) distance transform,
(iv) local maxima, (v) skeleton, (vi) 2D representation (seg-
ment end-points/circles), (vii) 2D representation (selected end-
points/circles). Left: One-fish; Region area: 36×117; blob area:
2189, skeleton area: 240. Number of circles: 109 (vi), 46 (vii).
Right: Two-fishes; Region area: 47×164; blob area: 2150;
skeleton area: 461, number of circles: 176 (vi), 84 (vii). Note:
the end-points/circles density can be reduced, e.g. by keeping
only longer segments (as done in the last row).

modeled using the median color. An opening operator, imple-
mented using the integral image [10] for efficiency, is used to
eliminate false detections. This method is good enough under
controlled illumination, but in complex scenarios, advanced
methods such as Robust PCA could be used.

2) Connected-component labels: are obtained using an ef-
ficient run-base algorithm [11]. See Figure 3 for an example.
Each obtained labeled object (each silhouette) corresponds to
one or more fishes.

3) A 2D silhouette model: is used to represent a labeled
object. The 2D silhouette model consists of a skeleton and
a set of covering circles (see examples in Figure 4 bottom
row), where line segments approximate the skeleton, and
circles (centered at the end-points of each segment) cover the
silhouette. This representation is robust under occlusions, and
thus is used later in the 3D analysis.

The steps of the process to obtain this representation is
illustrated in Figure 4, and consists of:

i) Input region.
ii) Segmented silhouette.

iii) Distance Transform (DT): it gives, for every pixel in the
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Fig. 5: 3D matched points.

silhouette, the minimum distance to the silhouette edge.
We obtain it using the efficient linear algorithm in [12].

iv) Silhouette skeleton: DT local maxima (from Laplacian).
v) Segment-based skeleton approximation: method inspired

in the real-time line segment detector Edlines [13] [14].
vi) Silhouette representation: We associate a circle to the

end-points of each segment. The radius of each circle
corresponds to the distance given by the DT at that point.

vii) The number of segments can be selected, e.g. by keeping
only long segments.

This allows to efficiently obtain a compact representation of
each silhouette, which is later used in the 2D-to-3D matching.

D. Multi-view 3D analysis

This module integrates the 2D segmented silhouettes from
the multiple views, generating 3D fish candidates (location &
pose) using triangulation. Two key parts of this module are
the efficient forward-projection (3D to 2D), and the fitting of
the 3D fish shape model.

Multiview triangulation & matching. To efficiently integrate
information from multiple cameras, we triangulate the silhou-
ettes from the multiple views. This is achieved using the pixel-
wise varifocal camera model in [9], model that allows efficient
forward-projection for cameras in front of flat surfaces (i.e.
considers light refraction in the flat surface and in water). The
information from multiple 2D views is efficiently integrated
to obtain a 3D representation, as follows:

• We first match the silhouettes’ mass center from pairs
views in 3D (for all pairs of views) using triangulation.
To handle possible occlusions, we assume a silhouette
may match more than one silhouette.

• We then refine the matched silhouettes using the detailed
silhouette model (line segments+covering circles) follow-
ing a process similar to the one above, but taking into
account the all three views and matching all covering
circles for all pairs of matched silhouettes.

3D pose model & estimation: Modeling the fish 3D shape
is important and it is a problem that has been studied in the
past. Most models assume a midline and a deformable shape
around that midline or a ellipsoid-based representation (see e.g



Fig. 6: Re-projection on the three views.

Fig. 7: Fish center tracks.

[15] [16] [5] [7]). We match the triangulated data (see Figures
5 and 6), which later can be matched to a 3D shape model
that can be efficiently integrated in the tracking module.

E. Temporal analysis

The temporal analysis module integrates 3D detection infor-
mation overtime, and it can track each fish position, pose/shape
in 3D. In addition, the obtained tracking information can be
used to analyze fish interaction and behavior. In the present
paper we use simple temporal association, as the 3D fish
interaction and behavior analysis is out of scope of this paper.

III. RESULTS

We present results on the described scenario (three cameras
facing three flat tank surfaces), to validate our approach. This
scenario is closer to the case of an aquarium than to underwater
vehicles, but it allows to study the key issues of the problem
(fish detection and matching) under refractions, and to evaluate
the efficiency of the proposed methods.

3D matching & re-projection. Figure 5 presents the result
of matching the silhouettes, while Figure 6 presents results of
the forward-projection of matched points. Note that each fish
and each virtual fish (i.e. mirror) is detected (in the 3D map
& re-projections), and occlusions are correctly handled.

Processing time. Table I presents the processing time of the
implemented modules for two experiments considering three
and six fishes. Each image of each view has a 1024x800 pixel
resolution. In addition to the number of fishes, we evaluated
the effect of using a more detailed fish model (the number
of circle covers in the triangulation: 15, 45 and 135). We can

TABLE I: Processing time of main modules. Average over 50
frames (1024x800 pixels); Intel I5-4690 @3.50GHz (4 cores),
32 GB RAM. Ubuntu 15.4, gcc 4.9.2, C/C++.

Number of fishes 3 6
Processing time [ms]

2D BG/FG 11.83 12.3
2D Labeling 9.02 12.05
2D DT & Skeleton 0.39 0.80
Total single view 21.24 25.15
Triangulation (center) 9.78 17.27
Triangulation (skeleton) 44.9 163 2543 73.27 183.6 2345
Total multi-view 54.7 173 2553 90.5 201 2362
Total [msec] 76 194 2564 116 226 2387
Total (fps) 13.2 5.15 0.39 8.62 4.42 0.41

Circle cover number 15 45 135 15 45 135

observed that the single view processing runs at about 40-45
fps (the three views run in parallel), while the 2D information
triangulation runs at 55-103 fps, with the triangulation time
being longer for larger number of fishes and for larger number
of segments, as expected. As it can be observed, increasing
the number of fishes increases the processing time, but when
the 2D silhouette model is not too detailed (circle cover
number less that 45), the processing time is about 5 fps or
less. Processing time could be reduced by reducing image
resolution.

IV. CONCLUSION

To study fish behavior (including the injection of artificial
visual / acoustic stimuli), we require the accurate and efficient
estimation of 3D models of fish trajectories and shape in
water. As a first step in this direction, we have presented a
real-time 3D fish detection and tracking system. The system
uses multiple cameras capturing images though flat surfaces,
which makes it an appropriate design for underwater vehicles
as well as aquariums. The method is based on matching
silhouettes from multiple views, and it uses an efficient model
for efficient forward-projection for light for cameras in front
of flat housings. Detection results in a water tank are presented
for validation. In addition, a detailed analysis of the processing
time of the proposed system is presented, showing that the
system is fast enough for small and middle size fish swarms.

There are three key issues that still need to be addressed.
The first one corresponds to improving the foreground seg-
mentation robustness under illumination changes & reflections
of external objects. The second point is to achieve robustness



under occlusions, in particular for large fish schools, while
having real-time processing. Finally, we are interested in mod-
eling fish-fish interaction, individual and group fish behavior,
and fish behavior response to artificial stimuli.
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